Inhibition of IAPP Aggregation and Toxicity by Natural Products and Derivatives
نویسندگان
چکیده
Fibrillar aggregates of human islet amyloid polypeptide, hIAPP, a pathological feature seen in some diabetes patients, are a likely causative agent for pancreatic beta-cell toxicity, leading to a transition from a state of insulin resistance to type II diabetes through the loss of insulin producing beta-cells by hIAPP induced toxicity. Because of the probable link between hIAPP and the development of type II diabetes, there has been strong interest in developing reagents to study the aggregation of hIAPP and possible therapeutics to block its toxic effects. Natural products are a class of compounds with interesting pharmacological properties against amyloids which have made them interesting targets to study hIAPP. Specifically, the ability of polyphenolic natural products, EGCG, curcumin, and resveratrol, to modulate the aggregation of hIAPP is discussed. Furthermore, we have outlined possible mechanistic discoveries of the interaction of these small molecules with the peptide and how they may mitigate toxicity associated with peptide aggregation. These abundantly found agents have been long used to combat diseases for many years and may serve as useful templates toward developing therapeutics against hIAPP aggregation and toxicity.
منابع مشابه
Star Polymers Reduce Islet Amyloid Polypeptide Toxicity via Accelerated Amyloid Aggregation
Protein aggregation into amyloid fibrils is a ubiquitous phenomenon across the spectrum of neurodegenerative disorders and type 2 diabetes. A common strategy against amyloidogenesis is to minimize the populations of toxic oligomers and protofibrils by inhibiting protein aggregation with small molecules or nanoparticles. However, melanin synthesis in nature is realized by accelerated protein fib...
متن کاملMolecular tweezers inhibit islet amyloid polypeptide assembly and toxicity by a new mechanism.
In type-2 diabetes (T2D), islet amyloid polypeptide (IAPP) self-associates into toxic assemblies causing islet β-cell death. Therefore, preventing IAPP toxicity is a promising therapeutic strategy for T2D. The molecular tweezer CLR01 is a supramolecular tool for selective complexation of K residues in (poly)peptides. Surprisingly, it inhibits IAPP aggregation at substoichiometric concentrations...
متن کاملSynthesis of N-arylmethyl Substituted Indole Derivatives as New Antiplatelet Aggregation Agents
A number of N-arylmethyl substituted indole derivatives have been synthesized and their effectiveness against ADP and arachidonic acid induced platelet aggregation in human plasma was determined. The desired compounds were synthesized by reacting the appropriate aniline derivative with isatin (or substituted isatin) to form the corresponding imine structures. The so formed compound was then act...
متن کاملSynthesis of N-arylmethyl Substituted Indole Derivatives as New Antiplatelet Aggregation Agents
A number of N-arylmethyl substituted indole derivatives have been synthesized and their effectiveness against ADP and arachidonic acid induced platelet aggregation in human plasma was determined. The desired compounds were synthesized by reacting the appropriate aniline derivative with isatin (or substituted isatin) to form the corresponding imine structures. The so formed compound was then act...
متن کاملElectrochemical Synthesis of Novel 1,3-Indandione Derivatives and Evaluation of Their Antiplatelet Aggregation Activities
Electrochemical oxidation of some selected catechol derivatives, using cyclic voltammetry, in the presence of different 2-aryl-1,3-indandiones as nucleophiles, resulted in electrochemical synthesis of new 1,3- indandione derivatives in an undivided cell in good yield and purity. A Michael addition mechanism was proposed for the formation of the analogs based on the reaction conditions which wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016